A family of mixture models for biclustering

نویسندگان

چکیده

Biclustering is used for simultaneous clustering of the observations and variables when there no group structure known a priori. It being increasingly in bioinformatics, text analytics, so on. Previously, biclustering has been introduced model-based framework by utilizing similar to mixture factor analyzers. In such models, observed are modeled using latent variable that assumed be from . Clustering imposing constraints on entries loading matrix 0 1 results block diagonal covariance matrices. However, this approach overly restrictive as off-diagonal elements blocks matrices can only which lead unsatisfactory model fit complex data. Here, where matrix. This ensures terms within non-zero not restricted 1. leads superior A family models developed components For parameter estimation, an alternating expectation conditional maximization (AECM) algorithm used. Finally, proposed method illustrated simulated real datasets.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a study on thermodynamic models for simulation of 1,3 butadiene purification columns

attempts have been made to study the thermodynamic behavior of 1,3 butadiene purification columns with the aim of retrofitting those columns to more energy efficient separation schemes. 1,3 butadiene is purified in two columns in series through being separated from methyl acetylene and 1,2 butadiene in the first and second column respectively. comparisons have been made among different therm...

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Restructuring exponential family mixture models

Variational KL (varKL) divergence minimization was previously applied to restructuring acoustic models (AMs) using Gaussian mixture models by reducing their size while preserving their accuracy. In this paper, we derive a related varKL for exponential family mixture models (EMMs) and test its accuracy using the weighted local maximum likelihood agglomerative clustering technique. Minimizing var...

متن کامل

MAP for Exponential Family Dirichlet Process Mixture Models

The Dirichlet process mixture (DPM) is a ubiquitous, flexible Bayesian nonparametric model. However, full probabilistic inference in this model is analytically intractable, so that computationally intensive techniques such as Gibb’s sampling are required. As a result, DPM-based methods, which have considerable potential, are restricted to applications in which computational resources and time f...

متن کامل

Small-Variance Asymptotics for Exponential Family Dirichlet Process Mixture Models

Sampling and variational inference techniques are two standard methods for inference in probabilistic models, but for many problems, neither approach scales effectively to large-scale data. An alternative is to relax the probabilistic model into a non-probabilistic formulation which has a scalable associated algorithm. This can often be fulfilled by performing small-variance asymptotics, i.e., ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Analysis and Data Mining

سال: 2021

ISSN: ['1932-1864', '1932-1872']

DOI: https://doi.org/10.1002/sam.11555